Posts

2024 Study Architecture Student Showcase - Part V

Welcome to Part V of the 2024 Study Architecture Student Showcase! In today’s installment, materiality plays a pivotal role in the functionality of buildings, designs, and various architectural processes. 

Cork, acrylic, steel, concrete, wood, timber, and wires – for many, they may seem like mere materials for building. However, the projects below invite viewers to think about these materials through a different lens. 

From rethinking raw material standardization to highlighting the benefits of mass timber, viewers are encouraged to think deeply about sustainable production and opportunities for innovation. Other projects focus on the use of cork as a sound-insulative and the integration of natural materials such as clay and man-made elements such as steel. 

L-Shape Modular Cork Shelving System by Suna Choi & Sara Mohamed, B. Arch ‘24
American University of Sharjah | Advisor: Tania Ursomarzo

This installation is designed to create a double-functional partition that provides sound insulation and serves as a shelving system. It will be installed between the open studio spaces in our architecture, art, and design college building (CAAD) to reduce noise while offering students a place to store their items. Additionally, it serves as an aesthetic decoration for the space.

We chose cork as the main material due to its excellent sound-insulative qualities. Plywood was initially selected as the secondary material to create the shelving planes; however, we later decided to use only cork to fulfill both sound insulation and shelving purposes. Cork is not only sound-insulative but also biodegradable and aesthetically pleasing with its natural color.

The L-shaped modules, consisting of three rectangular patterns, are strategically stacked to form a shelving system that can be used on all sides. To connect the cork L-shaped modules together, we experimented with different materials such as thin plywood and acrylic to create simple connectors. After multiple iterations, we chose acrylic for its transparency, which would not distract from the natural aesthetic of the cork, unlike plywood.

Finally, we painted the top view of the model (the shelving surfaces) using primary colors: red, yellow, and blue, inspired by Mondrian’s compositions.

Instagram: @suliman.studio, @suna.choi_i, @triptychnyc

MODULAR CORK ACOUSTIC INSULATION AND FURNITURE SYSTEM by Rabab Al-Ali & Razan Almajid, B. Arch ’24
American University of Sharjah | Advisor: Tania Ursomarzo

In approaching this project, our primary objective was to address the disruptive noise levels at the College of Architecture, Art, and Design (CAAD), where our site will be located. These noise levels are highly distracting for both students and visitors, necessitating an effective solution to enhance the acoustic environment. Our considerations for the site location are based on the noise levels. We identified the two loudest areas as the spaces between studios and the main entrance. These areas are particularly disruptive during pinups and reviews, necessitating a strategic approach to mitigate the noise and improve the overall environment.

Our aim is to design a flexible, easily movable, and rebuildable structure, ensuring multi-functionality. We sought to develop a solution that could be effortlessly relocated and reassembled multiple times, providing adaptability and improved acoustic management throughout the space. An additional benefit of our modular design is its versatility; the modules can be easily reconfigured into different types of furniture, demonstrating their efficiency and practicality.

We have selected cork as the primary material for our project due to its numerous advantages. Firstly, cork possesses excellent sound absorption properties, effectively addressing our main noise concern by significantly reducing noise levels and minimizing sound transmission between spaces. Secondly, its lightweight yet durable nature facilitates the easy construction, deconstruction, and relocation of our structure. Lastly, cork is a natural and sustainable material, harvested from the bark of cork oak trees without causing harm, making it an environmentally friendly choice.

Instagram: @ralali.arch, @rnm.arch, @triptychnyc

Wheel House by Tilden Reid Puckett, B.S. Architecture ‘24
University of Virginia | Advisor: Peter Waldman

I designed the Wheel House after experiencing land and water I know to be beautiful. Its sleek, sailboat-inspired lines and lotus flower aesthetics evoke a sense of tranquility and orthogonal organic beauty. The building’s foundation integrates seamlessly with the dam’s robust concrete structures, enhancing the synergy between natural and man-made elements. Inside, large windows and open spaces ensure an abundance of natural light, crafting an atmosphere reminiscent of being on an open ocean or beneath a cascading waterfall. Every detail, from the material strategy of utilizing the natural erosion of corten steel to the proportional light/heaviness that attributes to its vertical and horizontal harmony. 

The design draws inspiration from the works of renowned architects such as Frank Lloyd Wright, known for his integration of structures with their natural surroundings; Tadao Ando, whose use of concrete and light creates spaces that are both minimalist and profoundly serene; and Peter Waldman, my studio professor of whom’s work intelligently collages materials into profound sculptures of place. With its placement, the Wheel House defines the nature around it. Built on a steep slope, its terracing and retaining walls allow it to seamlessly rest under, on, and above its environment. This project reimagines the home and presents a more careful architectural attention to beauty and art. I believe that when one looks at this structure, they can start to imagine the coarse roar of the water falling down the dam and feel the rippling wind stream across the reservoir. I designed the Wheel House to express further land and water I know to be beautiful. 

This project won the Duncan J. McCrea Memorial Award.

Instagram: @tilden.reid, @aschool_uva

Epiphytic-Retrofitting: Wooden Structures to Top Out Unfinished Constructions on the Galapagos by Paula Cano-Vergara, M. Arch ’24
University of Texas at Austin | Advisor: David Heymann

Epiphytic-Retrofitting: Wooden Structures to Top Out Unfinished Construction on the Galapagos Research explores potential applications of lightweight timber members to envision design possibilities that might lead to more environmentally responsive architecture, endemic to the Galapagos Island in Ecuador. 

The study focuses on ten wood species, both endemic and introduced—Avocado, Bamboo, Black Carob, Cascarilla Cinchona, Guava, Galapagos Guava, Machinel, Mahogany, Matazarno, and Spanish Cedar—to explore how timber can replace conventional construction methods and address rapid urbanization and the prevalence of unfinished concrete structures.

The title emphasizes two concepts: “Epiphytic,” referring to plants that use other vegetation for physical support rather than nutrients, and “Retrofitting,” a sustainable method for vertical growth and densification. The project aims to protect the fragile ecosystem by reducing the exploitation of natural resources and restoring endemic vegetation. The proposed vertical expansion utilizes lightweight timber from six selected species to complete unfinished buildings, up to 5 floors total.

The structural capacity of each species is determined by grain structure, categorized into three main types: 1) Curvy and wavy, 2) Irregular, and 3) Straight grain. Structural elements are designed based on standard branch and trunk diameters and lengths, with Mahogany and Matazarno ideal for joints, Spanish Cedar and Guava for primary and secondary elements, and Avocado and Carob for cladding and decking planks. The proposal also includes three vertical growth strategies that prioritize efficiency by branching to the nearest points from the top element to the next floor, based on [the types of] tree branching: Dichotomous, Monopodial, and Sympodial. Additionally, trusses integrate the vertical elements and transfer loads to concrete frames ranging from 3x3m to 9x15m.

Despite common perceptions of timber as an unsafe and inferior material compared to its competitors, this research advocates for its potential in developing safe, low-carbon buildings. Timber supports better forest management, curbs deforestation, and promotes the use of locally-sourced materials. Additionally, the research serves to protect and contribute data records of remote geographies like the Galapagos Island, the “living museum and showcase of evolution.”

Instagram: @utsoa

De-Framing the Built Environment by Drew Dunphy, M. Arch ’24
University of Miami School of Architecture | Advisors: Christopher Meyer & Joachim Perez

To design is to challenge what has come before to create something new. In today’s modern era of architecture, there has been an explosion of new programs and materials that facilitate the design process and have increased the production rate exponentially. In doing so, the profession has accepted standard practices as rules and allowed material use and industry to become rigid.

Challenging what makes architecture function as a profession is not easy, but it is necessary to continue driving innovation. Using mass timber as a case study, De-Framing the Built Environment looks holistically at manufacturing, architecture, and construction to break down what is immediately accepted as best practice. 

De-Framing the Built Environment breaks the process by which design goes from raw materials to an inhabitable space into three focus areas. Starting with the manufacturing process, it challenges the current centralized system of material sourcing and calls for a regionalist approach that emphasizes sustainable sourcing. From there, it stresses the importance of integrated design that reorients the cost from strictly economic to include ecological and temporal design costs. Finally, De-Framing the Built Environment rejects the accepted lifespan of a building by focusing on architecture that is easy to assemble, inhabit, and disassemble with a low margin of wasted material. 

Design, by its very nature, should be synonymous with innovation. While this thesis focuses on mass timber, questioning the process by which raw materials are transformed into space is a universal principle that must be applied across disciplines and building practices. You, as architects, designers, and construction professionals, are integral to this change.

This project was awarded an Honorable Mention by the University of Miami School of Architecture Faculty Award for Outstanding Thesis Work in the Master of Architecture Program. 

Instagram: @dunphy_27, @LU_lab_miami, @ateliermey 

Turning Tree Forks into Structures: An Experimental Analysis of a Minimally Processed Material Within the Age of Standardization by Zachary Chartrand, M. Arch ’24
Lawrence Technological University | Advisor: Scott Shall

Since the Industrial Revolution, the building industry has dedicated enormous energy to developing processes that can take raw, idiosyncratic materials and produce highly controlled, specifiable products. This has served the building industry well for years. Material standardization allows for standardized structural details and procedures that can be easily followed by the common builder, [allowing them] to produce structures that can be analyzed and designed based on the uniform properties of the building product. Unfortunately, this process rejects those materials that do not meet the uniformity required, regardless of their unique structural potential.

Recent advancements in digital analysis allow for the ability to identify unique qualities within raw materials. Advancements in computational technology allow for the optimization of a structural design to accommodate for these idiosyncratic properties. The development of a platform, involving digital analysis and computational design, would make this method of design available to the common builder and architect. The development of a process, using common construction techniques, would allow the common builder to build structures using these idiosyncratic pieces. The development of this platform for design, and system of construction, would demonstrate that advancements in technology can initiate a movement towards more sustainable architecture by reducing the amount of processing necessary to use raw materials in a structural capacity.

This will be studied by obtaining an inventory of tree forks and scanning them into a digital inventory. A script will then be developed that optimizes fork fitment to different assembly logics for shell structures. Next, a joinery system and system of construction will be developed that processes the forks based on data outputs from the script. Success will be measured in joint precision and structural rigidity.

This thesis won the 2024 CoAD Deans Award. 

Instagram: @scott_shall

Moore Square Indie Music Center by Daniel Knorr, Bachelor of Environmental Design in Architecture ’24
NC State University | Advisor: Zach Hoffman

Moore Square Indie Music Center gives a home to the indie musicians of Raleigh, fulfilling their three core needs: practicing, recording, and performing. The center contains practice and recording room clusters in addition to a main performance venue space. The center embodies the spirit of the indie music community through the use of rhythm and movement and a familiar gritty materiality that alludes to the idea of “garage” or “basement” bands. 

Interstitial spaces generate chance encounters between musicians and fans. This not only strengthens the indie music community, but more importantly, allows musicians to engage and grow their fan base.

The Stitch / Chance Encounters

The most important elements of the Center are the interstitial spaces that occur between major programmatic elements. These spaces act as an environment where chance encounters can happen between musicians and fans. This is especially important for indie music, a culture that thrives on strong interpersonal connections, and a strong dedicated fanbase. 

The entire Center is split down the middle, with the left theater half belonging to the community, and the right practice and recording half belonging to the musicians. The atrium space, “the stitch,” bridges the two halves of the Center together.

Materiality

The idea of a garage band has pervaded indie music culture since its inception. To capture this spirit, the Center uses materials such as cast-in-place concrete and raw metal, alluding to the origins of indie music. On the other hand, wood is used in the interiors of the practice studios to create a homey atmosphere, alluding to the idea of a sole musician practicing in their bedroom.

Texture and material are also used to signify the function of the spaces within the Center. The interiors of both the theater and the studios have highly textured acoustic paneling systems, whereas their exteriors are seamless and perfect. The exterior wood cladding of the theater serves to create an inviting presence that guides visitors into the theater. On the other hand, the monolithic concrete used in the exterior of the studios creates a fortress-like feeling, “protecting” the musicians inside.

This project won the ​​2024 AIA Triangle Student Design Award.

Instagram: @daniel.knorrr 

The Clay Huts and Metal Shed by Shixian Zhang & Ruozhao Cui, B. Arch ’24
Cal Poly University – Pomona | Advisor: Claudia Wainer

The Clay Huts and Metal Shed is a community-oriented ceramic arts and design center located in Elysian Valley. It is positioned with its north side facing the LA River and the future Taylor Yard development, and its south side overlooking the Lewis MacAdams Riverfront Park. The rich history of Elysian Valley, marked by a blend of manufacturing facilities, single-family homes, and a flourishing artist community, forms a distinctive backdrop for this project. The design merges existing industrial elements with new, organically inspired clay volume, aiming to create not just an artistic space for ceramic artists but also a vibrant community hub for the Elysian Valley neighborhood. 

This project involves the adaptive reuse of an existing industrial building, which serves as a shell for the newly proposed clay volumes. The design strategy begins by categorizing program spaces into enclosed and loose types. Each clay volume, distinct in its form, encompasses a variety of enclosed functions. The interstitial spaces between these volumes, designated as loose programs fostering interaction and community engagement. Additionally, the design incorporates two sculptural gardens within these volumes. The clay huts deform the metal shed perimeter and break down the scale of the building, making it more approachable and relatable to the community.   

The material palette is a harmonious blend of clay and steel, symbolizing the integration of traditional craftsmanship with industrial production. The clay walls, constructed of rammed earth, feature a scalloped facade that lends a tactile, organic feel to the design. The primary structure utilizes the existing metal framework, altered and updated to support the new programmatic volumes. This interplay of materials is a defining characteristic of the design, with some areas showcasing an overlap of clay and steel through openings, while in others, the metal shell stops short, allowing the clay volumes to peek through. 

The juxtaposition of the clay huts against the metal shed highlights the contrast between stereotomic and tectonic, creating varied transitions in different spaces. For instance, upon approaching the building, one can see both the clay and corrugated metal cladding simultaneously. Entering the building through the open programs, visitors experience the interplay of the metal shed, steel structure, and clay huts. Once inside a clay volume, the surroundings are entirely enveloped by clay finish, offering a distinct spatial experience.

Instagram: @claudwain

Debunking the Myths of Wood: Mass Timber Contemporary Architecture to the Rescue of Cultural Heritage by Neftalí X. Luciano-Castillo, B. Arch ’24
Pontifical Catholic University of Puerto Rico | Advisors: Manuel De Lemos-Zuazaga & Pedro A. Rosario-Torres

Wooden architectural heritage represents an invaluable asset in the cultural and historical narrative of Puerto Rico. With its unique characteristics, craftsmanship and carpentry of a bygone era, it stands out from other architectural styles. Moreover, wooden heritage serves as a catalyst for reevaluating our approaches to designing and constructing buildings. As society gravitates towards sustainable practices, the resurgence of wood as a primary construction material offers a promising opportunity. This resurgence not only revitalizes historical structures but also enables a harmonious coexistence between traditional wooden architecture and contemporary design. However, this traditional architecture is often misjudged and misunderstood due to the poor knowledge and involvement of people in their culture, and the lack of legislations in favor of heritage preservation. Due to these and other external threats, these structures have begun to disappear from our urban fabric, leaving not only a void in space, but also in our culture and identity.

As a response to these factors, the proposal seeks to promote the preservation of wooden architectural heritage through community engagement, tourism, education, testing and manufacturing, in a design that serves as a living laboratory that combines historic structures with mass timber construction. The synergy between historic preservation and the incorporation of contemporary architecture signifies a unique chance to embrace the past while paving the way for a more sustainable future. The project’s location is the Central Aguirre Historic District in Salinas, Puerto Rico, an old sugar cane company town that houses a collection of historic wooden structures. The design is organized into three main volumes: a restored and repurposed historic building that houses museum spaces; a second volume that contains a manufacturing laboratory; and a taller volume that functions as a school of wooden architecture design and conservation. The main goal of this project is to serve as a catalyst for the preservation and restoration of historic wooden structures in Aguirre and all around Puerto Rico.

Instagram: @neftalixavier

Harmonic Convergence by Nicholas Owens, M. Arch ’24
Lawrence Technological University | Advisor: Masataka Yoshikawa

This project explores spatial and structural design, inspired by the concept of a ‘Cabinet of Curiosities’ and music. The initial phase focused on finding objects and integrating music, using guitar strings and thick wire to symbolize sheet music, representing order in chaos.

In the representation phase, the project incorporated methodologies from Neil Denari and Borges. The transition to 2D representation utilized Maya to create music stand models linked by chains, with six layers of wire illustrating chaos and order visually.

During development, Rhino was used for initial designs and Zbrush for refinement, creating a wire mesh structure. This phase emphasized materiality and spatial dynamics, resulting in a unique architectural design facilitating gallery spaces and visitor pathways.

The final phase integrated the structure with its landscape, showcasing LED wires and spatial potential. Interior renders highlighted the gallery space’s unique characteristics, creating a quasi-moiré effect with overlapping glass structures. The project envisioned future enhancements, including wire animation to visualize music flow, enhancing the visitor experience and reflecting the project’s foundation in music and organized chaos.

Overall, the project is a sophisticated blend of design, representation, and development, creating an innovative space that intertwines musical and structural elements to find order in chaos.

Instagram: @owensarchitecturaldesign, @masataka.yoshikawa

Stay tuned for Part VI!

2022 Study Architecture Student Showcase - Part I

Welcome to the first installment of the 2022 Study Architecture Fall Student Showcase series! To give you an insight into what it is like to study architecture, we are taking a closer look at student thesis and capstone work from 2022. Throughout this series, we will feature work from recent graduates of ACSA member schools across the globe, highlighting a wide array of unique architectural explorations. For the next couple of months we will feature weekly installments of design student’s final projects covering a range of topics. This week we take a look at the intersection of architecture and climate change, specifically as it relates to sea level rise.

We will be sharing these projects on Instagram at @studyarchitecture and @imadethat_ so let us know your favorite there.

Floating Omnitopia by Jessica Smith, M.Arch ’22
University of Virginia | Advisor: Mona El Khafif 

Norfolk, Virginia, is staring climate change in its full force as many residential areas are experiencing flooding throughout the year. These residential areas range in value of social vulnerability. The risk of flooding is not considered when determining “vulnerability.” It is observed that many areas of high vulnerability are also areas prone to flooding and are not protected by flood resilience projects. Other areas of low vulnerability are also affected by the flooding, but these residents have the resources to relocate out of Norfolk if needed. If they move, this will have a negative effect on the local economy. As more of Norfolk is taken by rising sea levels, where will these residents go?

FEMA has identified areas of recurring flooding, which will be called blue-fields. The homes within these blue fields are eligible for the FEMA Home Buyout program where a home-owner may sell their home to FEMA for that lot to be cleared. This project proposes another relief effort beyond this, in which this buyout funding from FEMA is used within a partnership to form a common.

This is the current prompt, and the urgent response should be an alternative to retreating, reject-ing both the utopian and dystopian models commonly associated with efforts to combat climate change. All the people in this area have a shared goal of protecting their homes, which creates a common ground. This is the basis needed for a new common of Norfolk of both shared assets and stewardship, existing on the water. It is a place for all, or the omnitopian common.

Inspired by projects carried out in the Netherlands, the omnitopia typology of housing is being implemented in Norfolk to create a collective partnership between residents and rising water conditions. It comes in the form of a common, a water-based community within which land(/water) and certain assets ownership is redefined as shared at the block-scale. Shared stewardship allows for growth / development / maintenance at a more concentrated (therefore, more effective) scale.

Forming the common of their choosing, the residents and various professionals are presented with a card game. The game is used to sculpt the form, congregate the residents, metabolize the system, compensate those involved, and restore ecological relationships. The players of the game hold various roles, from FEMA funding to the architect and residents. Select cards of the system are chosen to piece together the policies and creation of the common, making it adaptable to various people groups and sites. A sample common is formed to present an example of the omnitopia, using cards such as the medium density option in a cluster typology.

Instagram: @jessc.smith

Beyond the Barrier: The Resilience of Connecting People to Place by Eric Resnick, M.Arch ’22
University of Maryland | Advisor: Michael Ezban

Atlantic City, New Jersey is globally cited as one of the most vulnerable cities to the effects of climate change and sea level rise, representing the socioeconomic, cultural, and ecological threats that all coastal communities will face within the next half-century. 2060 projections indicate that Atlantic City will experience up to 155+ flood events per year and 50% of the city could be uninhabitable.

In leveraging the city’s coastal location, current institutions, and historic tourism-based infrastructure, the Resilient Transect becomes a framework for adaptation and growth, engaging the public and attracting an international cohort of researchers, designers, and policymakers to test and implement globally applicable and revolutionary strategies for coastal resilience. The iconic Atlantic City Boardwalk is abstracted as a beach-to-bay datum to catalyze adaptation, support, research, and participation along the transect, adaptable to environmental change and socioeconomic needs within and beyond Atlantic City.

Rising Seas: Cataloging Architectural Response in the Conch Republic by Christine Sima, M.Arch ’22
University of Cincinnati | Advisor: Edward Mitchell

Thesis research focused on architectural and environmental responses to sea level rise. Following this research, a catalog of architectural responses was created as a design framework for future architects.

The selected site of Key West Florida helps show the utilization of the four major response categories from the catalog; Evacuation, Protection, Adaptation, and Adoption. All included images show theoretical implementation of the catalog across different zones of the island.

Instagram @christinesima.arch

Demo-Polis for Athens, Greece by Maria Lazaridis, B.Arch ’22
NY Institute of Technology | Advisor: Jonathan Friedman

Athens, Greece occupies a significant role in the history of architecture as the birthplace of classical order. Its associated role in history however, developed a sprawling city ignorant of its ancient architecture and organizational urban plan order . This congested metropolis is filled with brutal concrete apartment blocks and lack of green space, overall contributing to larger issues of congestion and heat island effect due to climate change.

This thesis explores a development of a resilient Athens, equipped for its density whilst promoting sustainability. This thesis explores the design of an efficient city plan that no longer ignores un-excavated archaeological sites to create a poetic relationship of old city to new city, while overall improving quality of life.

Pale Blue Dot: Adaptation in the Flux of Chaos by Jasmin (Minji) Kim, Taylor Marshall, Jeannette Wehbeh, M.Arch ’22
Toronto Metropolitan University | Advisor: Marco Polo

The impact of climate change will not spare a single aspect of life as we know it and adaptation is our only option at this point in the trajectory of the world’s demise. Although we will be experiencing similar climate catastrophes around the globe, each region will have its own adaptation method dependent on location and culture. Synthesizing our research resulted in a new map of adaptability conceived of Goldilocks Zones deemed habitable lands. These Goldilocks Zones will be the most vulnerable to the elements of chaos and the most significant regions affected by the year 2100. Fez, Morocco was selected as the geographical area of study due to its numerous elements of chaos, including natural disasters, high land surface temperatures, wildfires, air pollution, rising air temperatures, and an influx of migrants.

Flux is chaos-seeking balance through adaptive processes. Our research towards the year 2100 and the layers of the climate chaos we will face, combined with conceptual theories on adaptation, shows no ‘single’ solution for adaptability. To adapt to our current and future evolving environment, a series of fluctuating initiatives that tackle issues at various scales is instrumental for present and future change. Nine strategies, applied to Fez, Morocco, can be applied to any other city within the Goldilocks Zone. It is a framework to guide the evolution of architecture through climate change while maintaining tradition, meaning, and comfort.

Instagram: @jasminkimm, @taylormade.arch

LIVE CORAL: Science & Living District by Wilmaliz Santiago, B.Arch ’22
Pontifical Catholic University of Puerto Rico | Advisor: Pedro A. Rosario

At the global level, climate change has brought with it several transformations, among them the rise in sea level. There are two main reasons why this happens, thermal expansion and glacial melting, both caused by global warming. Scientific research points out two important dates for this situation, in 2030 changes in sea level will begin to be felt and/or noticed significantly in all parts of the world, leaving a few years on the way to 2100 where we will have sea level at its peak. For that year it is estimated that hundreds of cities will be under flooded areas and many of them will disappear. All this has great consequences for all forms of life on the planet. And it is that not only humanity would be suffering the ravages, but also the flora and fauna, especially marine life. Sedimentation, the offset of nesting waves, high temperatures, the bleaching of coral reefs and endless situations that leave us with great consequences.

The project located in Rincón, Puerto Rico, is one based on scientific theories and predictions. The LIVE CORAL proposal seeks to provide a safe place for both humanity and marine life. A building is created where marine life can be researched and protected through this process of adaptation to sea level rise. In the same way, human life will have a safe place to live without limiting its quality of life, in addition to creating awareness and educating humanity about these changes and the effects it will have on other species and how this ends up affecting us.

The future in some way will always be uncertain and difficult to predict. However, thanks to the technological advances of our time there are many things that can help us foresee it. For this reason, this proposal seeks a complete adaptation over the years from the present to the imaginable 2100. Maintaining its efficiency, quality and use in its best state.

Instagram: @wilmaliz_santiago

A Residential Guide for Redesigning Coastal Homes in Hawai’i for Future Sea Level Rise: Punalu’u, O’ahu by Josephine Briones, D.Arch ’22
University of of Hawaii at Manoa | Advisor: Wendy Meguro

The ongoing consequences of climate change, due to human activity, have created a need for a shift in the ways we live, think, and build (Oppenheimer, 2019). For sea level rise, its effects like beach erosion, flooding, and inundation continue to persist; impacting coastal communities, especially those that lie on the shorelines, that will remain at risk if adaptive measures are not used (Oppenheimer, 2019).

On Oahu, Hawai’i, there has been a shift to increase resilient communities, however, small-private landowners, such as single-family homes along the shorelines have been left with limited guidance, education, and resources compared to large public/private landowners (City and County of Honolulu, 2020). As O’ahu’s efforts cater to large-scale development, like high-rises and/or mixed-use commercial structures for sea level rise adaptations, there is a demand for localized adaptation for communities not described by current guidelines and local land use ordinances. 72% of potential economic loss with 3.2 feet of sea level rise will be residential structures and land (Hawaiʻi Climate Change Mitigation and Adaptation Commission, 2021). As coastal communities prepare to adapt for sea level rise, new design thinking is necessary to exceed the requirements and recommendations that are currently practiced.

In alignment with the 2017 Hawai’i Sea Level Rise Vulnerability and Adaptation Report that states, “More research is needed to improve understanding and projections of localized vulnerability of beach and coastal environments to combined impacts of poorly sited beachfront development and erosion and flooding with sea level rise” (PacIOOS, 2021). This research uses a case study home along the shoreline of Punalu’u/Hau’ula to envision a new coastal typology in Hawai’i with adaptation solutions that are phase-able for living with increased sea levels. By providing shoreline homeowners of Hawai’i, especially those who own detached single-family homes that are at risk to the effects of sea level rise, with building adaptation guidance, practical design solutions, and accessible knowledge gives individuals the insights needed to protect their property, increase communities’ resilience to sea level rise impacts and, globally, provide solutions as incremental change that can be used to inform future shoreline homes on a large-scale.

Instagram: @jojo_briones

Shifting Sediments: Inhabiting the Land, the Sea, and the Space In-Between by Natasha Zubricki, M.Arch ’22
Dalhousie University | Advisor: Catherine Venart

The coastline is a dynamic edge between land and sea ruled by natural forces and illustrated through material processes of erosion, accretion, and deposition. As our climate warms with an increase in storm conditions and sea levels, the natural forces at work accelerate. Cycles of growth and destruction are an inevitable aspect of our environment that can be analyzed through hydrological impact, geological structures, and ecological networks, all forming ruins off fragments of the earth.

This thesis examines Prince Edward Island as a case study of how to shift our perspective and embrace the ocean as an instigator of opportunity. Three locations along an edge are investigated exploring various material and programmatic relationships that can be utilized as a layered strategy to become a catalyst for new life. A temporal architecture that works as both measure and armature is implemented as an infrastructural approach aimed to adapt to inevitable uncertainty.

The thesis focuses on the relationships between humans and oysters as main actors for adaptation while engaging with the natural forces at play. The project moves through time adapting to rising seas and the changing environment, allowing new possibilities to be formed off a ruin of the past. Through engaging with natural forces instead of fighting against, we can create new edges, establish home for both humans and oysters, as well as use inevitable decay to provoke new life.

Instagram: @tash_zubri

Check back next week for Part II of the 2022 Study Architecture Student Showcase.

 

Workshops on Accessibility at UVA

Workshop considers ways to improve accessibility to businesses, travel experiences for individuals with disabilities

Credit: Kayli Wren, Charlottesville Tomorrow

A Charlottesville-based nonprofit is working to create conversations about accessibility and travel.

The Blue Trunk Foundation recently held a workshop with the University of Virginia School of Architecture to reflect on what individuals with disabilities and their caregivers expect when they are traveling and what businesses can do to be more accessible.

Attendees also provided feedback to the Blue Trunk Foundation on mock-ups of its travel information website, which it is hoping to launch in the fall. The website will provide users with crowd-sourced accessibility-related information for businesses and feature curated content, such as blog posts.

“Charlottesville has so much to offer but one key ingredient is missing, and that’s accessibility,” said Susi Wilbur, community development liaison for Civic Access, a local business that provides sign language interpreters and closed captioning for people who are deaf and hard of hearing.

Members of community organizations, local business owners and others were among the approximately 30 people who attended the workshop, which was held at the UVa Licensing and Ventures Group office in the old Coca-Cola Building on Preston Avenue.

“It’s very important that [Blue Trunk] included us in this workshop because many people think, ‘Oh, we’re just going to focus on physical disabilities’ and they don’t think of disability that’s associated with being deaf, or having autism,” said Alissa Conover, community advocate for Civic Access. “Those are the types of disabilities that aren’t always included.”

Attendees weighed in on numerous accessibility-related questions, such as barriers individuals may face when traveling and the types of amenities that can improve travel experiences.

Participants raised several points, such as the need for accessible restrooms, wheelchair accessibility, quiet spaces, Braille materials, healthy food choices and announcements clearly written on screens.

“When I did compliance with the city, you had minimum standards … [Businesses] didn’t go any further than meeting the minimum standards of the number of parking spaces or the minimum standards of the way the bathroom is built,” said Jim Herndon, a former Americans with Disabilities Act coordinator for Charlottesville. “What I see here is going a step further, and saying, ‘Rather than just meeting the minimum standards, let’s make it an environment that’s pleasant for everybody.’”

Some members of the business community in attendance said they found the workshop helpful in thinking about ways to improve accessibility.

“I’m definitely interested in learning some sign language, maybe teaching my employees some sign language, too. Maybe getting our menu printed in Braille,” said Kathryn Matthews, who opened Iron Paffles and Coffee earlier this year.

Brian Ball, the general manager of retail operations at Carter Mountain Orchard, said recent paving has improved wheelchair accessibility to their facilities and that he would like to find ways to make the orchard more accessible.

“A lot of business owners could probably just get distracted by everyday business and not really even realize there are people out there who have specific special needs that you could probably easily cater to,” Ball said. “I’d like to make those changes to accommodate as many folks as possible.”

“It’s always good to have this type of meeting to open people’s minds to accessibility because as a person with a disability, it means a lot to be able to feel comfortable where you’re at,” said Brandon Rush, a peer advocate at the Independence Resource Center.

When asked how Blue Trunk could work with businesses to view accessibility as a good practice, attendees suggested holding training seminars for local business owners and certifying businesses that make an effort to be inclusive.

Blue Trunk founder Rupa Valdez, who is also an assistant professor in the Department of Public Health Sciences at UVa, said she found the feedback on a potential business rating system for the website to be particularly helpful. Some concerns were raised about whether a strict rating system — such as a numeric scale found on some travel sites — could conflict with the goal of getting businesses on board with improving accessibility.

“We want to be a space where interactions are positive,” Valdez said. “It’s not about shaming or blaming or anything like that.”

One idea that came up at the workshop was to provide different accessibility-related icons on the Blue Trunk website and use brighter icons to indicate available services.

“What I really appreciate about Blue Trunk is that it’s also positioning itself as a company that seeks to both be an advocate and at the same time a provider of services that are ultimately all-inclusive,” said Anselmo Canfora, an associate professor of architecture at UVa.

“The dream is really large for what this could look like,” said Valdez, who also cautioned that they do not want to overextend themselves too quickly.

“What could we do now and then how could we build that out systematically?” she asked.

Blue Trunk plans to initially launch its services in Charlottesville and Madison, Wisconsin.

Claire Wellbeloved-Stone, vice president of Blue Trunk and a research coordinator at UVa’s Department of Public Health Sciences, said the fall launch in Charlottesville would be accompanied by a series of events to engage the community.


Check out UVA’s School of Architecture.