Posts

2023 Study Architecture Student Showcase - Part I

Welcome back to the Study Architecture Student Showcase fall series!

We put out a call over the summer for student work and received a record number of submissions – thank you to everyone who participated. With the Fall semester in full gear, we are excited to share the most outstanding projects with you over the next few months. To give you an insight into what it is like to study architecture, we will take a closer look at student thesis and capstone work from 2023.

Throughout the Student Showcase series, we will feature work from recent graduates of ACSA member schools from across the globe. These projects will highlight an array of topics and explorations, ranging from building designs focused on women empowerment or climate change to research on biomaterials and much more. Tune in every week for a new installment focused on a specific topic.

This week we take a look at projects that are aimed at combatting the issue of flooding, which we are seeing rise in frequency across the globe. In the last few weeks alone, we have seen extreme examples of just how damaging floods can be. The work below focus on how we can improve the flood protection process.

Urban Flooding Reuse for Addis Ababa (Ethopia) by Michael Clifton, B.Arch ’23
Tulane University | Advisor: Ruben Garcia-Rubio

The Urban Flooding Reuse Proposal is intended to create a way for residents of the river meander to live with and reuse flood water for their own benefit. This is a response to a high population of Addis Ababa’s (Ethiopia) residents living in highly vulnerable areas to flooding and a high amount of housing being built from weaker materials like mud and wood. These two problems that exist in the city lead to dangerous living conditions with flooding in a city that experiences plenty of rain and flooding yearly—and is projected to see much more in the future due to climate change.

The proposal tackles other problems as well such as cleaning polluted water and creating public space in the city, while restructuring at-risk housing. The city has problems with pollution due to poor drainage and sewerage systems, and the amount of green space is far below the World Health Organization standard.
The proposal uses a system of channels that serve as pathways for water to travel from parcel to parcel while also being slow mobility pathways for pedestrians. The system for flow of water includes inputs from the Upper Kebena River, and introduces three different types of parcels for different treatment of water. The first being retention pools which hold water at the first stop in the system. The retention pools also include some natural vegetation for slight cleaning at this point. The second parcels are cleaning parcels, which have more natural vegetation and help clean water through the use of bioswales. The third type of parcels are for reuse of water and mostly come in the form of urban agriculture while also providing spaces for recreation and leisure throughout the river meander. The reuse parcels are spaces that create a public environment for pedestrians and can help create jobs through farming. The new housing buildings can have shops on the ground floor as well to help keep the informal economy alive in this area. Runoff water from the city is cleaned through the use of underground water deposits which will help with solid waste filtration and chemical cleaning before water from the streets enters the system. The proposal also includes bridges and ramps to help pedestrians cross the river and more extreme terrain on the north side of the river meander, creating a better connection from the city to the river.

This project was selected by the Oslo Triennale.

Instagram: @rubgarrub

Creative Triggering by Christine Chen, Meichen Duan, Ji Hyun Hwang, Jing Kang, Hong Ke, Wanshan Li, Zhe Li, Xinru Liu, Hoi Yau Lo, Ankita Mallick, Weixuan Wang, Ruijie Zhang, Wenhao Zhang, M. Arch ’23
University of Melbourne | Advisor: Justyna Karakiewicz & Theo Blankley

This studio takes the site of Australia’s largest major urban regeneration project – located at Melbourne, Fishermans Bend – which is over 480 hectares of land directly adjacent to the CBD. We propose the future of the precinct in light of ecological, environmental, structural and social changes across staged developments into the next century.

The Fishermans Bend precinct has its challenges. Much of it is threatened by flooding. A significant portion of the land is heavily contaminated by previous industrial users. We have learned that the quick fixes we often employ are based on misinterpreting symptoms for causes as we try to address current problems. We can observe that our quick interventions distract us from doing the deeper work needed that might lead to a better world for the planet, for all species and the environment, rather than just for the electorate.

By 2025, the Stage 1 will be completed and will feature large scale facilities for advanced manufacturing, fabrication, testing and prototyping with large scale collaborators such as the University of Melbourne, Boeing, Tesla, and others. By 2050, the Victorian Government proposes there will be 80,000 residents and employment for up to 80,000 people. Looking forward, we know that by 2100, much of Fishermans Bend could be under water, even under the most moderate predictions for sea level rises. We know that most of the surface soil is toxic. This combination of toxic land and flooding does not suggest that this is suitable place to live.

Combining Slow, Medium and Fast approaches, the propositions are illustrated by small, medium and large projects. These include two urban infrastructure strategies, and eight architectural projects.The works shown here illustrates an incremental development, with Stage 1 in 2025-2030, Stage 2 in 2030-2050, and Stage 3 in 2050-2100. Students worked collaboratively and developed programs and outcomes that interconnected and linked with each other – as evidenced in the final panels showing relationships between proposals and how one project may ‘trigger’ another.

Instagram: @msdsocial, @msd.gallery, @theoblankley, @meichend_, @lohoiyau, @ankitamallick,

BQE Hydrology Hub by Emma Mangels, B.Arch ’23
New York Institute of Technology | Advisor: Evan Shieh

The re-imagination of the Gowanus Canal aims to address the environmental and hydrological issues facing the Gowanus Canal at the local scale and the surrounding neighborhoods of Brooklyn at the borough scale. The Gowanus Canal and the surrounding neighborhood of Red Hook has been a highly-contested area due to the status of the waterway being declared a superfund site. As well as flooding occurring on the shoreline and also in-land which can be traced back to the out-dated combined sewer outflow system or CSO feeding into the canal.

To address this issue, a “Hydrology Hub” will be created at the crossing of the Brooklyn Queens Expressway (BQE) at the local scale to clean water in an efficient manner and reduce in-land flooding as well as making the water filtration process visible to the community. The hub will allow for people to follow the newly designed circular system of water filtration that uses both natural and man-made processes. The filtration circulation will bring the person down to the canal level where a walkable park will take over the current hard-edge of the canal. In order to protect the new in-land system, the borough scale will include the implementation of a soft shoreline to slow erosion and provide habitats for flora and fauna, creating a “kit of parts” to foster an environmentally resilient community while also placing an emphasis on circular systems of water.

Instagram: @mangels.arch, @ev07

Island Revitalization by Kelly Zheng, B.Arch ’23
New York Institute of Technology | Advisor: Farzana Gandhi

Coney Island is a peninsula that sits in the southern part of New York City. The site is a smaller scale of NYC that demonstrates the environmental problems that the city faces. It is an area full of residential structures and commercial businesses.

Coney Island suffers from bad air quality, urban heat, flooding, and poor water management, causing bad living quality and health risks. These issues should not be understood and treated separately. They are all part of a reciprocal ecosystem where one problem typically worsens another.

It is essential to develop a holistic and comprehensive integrated solution that makes Coney Island more livable today and far into the future. The proposal is inspired by such solutions found around the world and at multiple scales from masterplan to kiosks.

Coney Island was originally a collection of islands and shifting sand, with inlets connecting the islands during low tide periods. In the late 1700s, the sand-shifting movements closed the inlets, so the residents filled in the space and connected the islands into one whole island. Coney Island Creek was the water body that separated Coney Island from the mainland. Over time, the island expanded due to natural and manmade activities such as sand shifting or landfilling.

The proposal reintroduces the creek, forming additional routes for water flow. Additional canals will be integrated, dividing the island into 3 mini-islands. This development isolates the island’s midsection, the portion that will be most likely affected by flooding. The isolation prevents water overflow from entering the surrounding inland areas. The middle mini-island will be redeveloped as an amusement island, and be designed as a sponge park to absorb flooding or overflowing water.

Recreational areas and water management systems are incorporated into the islands, rapidly expanding the amount of green and blue to decrease the environmental risks. Real-time visual notifications and warning systems are integrated into the streets, using lights, sounds, and kiosks to educate people about environmental factors and give alerts for safety threats. The strategies and real-time data systems work together to build a stronger, low-vulnerable community for citizens and visitors.

Instagram: @kellyzhangarch

Replacement by Zoe Holiday, B.Arts ’23
Savannah College of Art and Design | Advisor: Gordon Nicholson

Replacement is a Community Center located in Wilmington Island, GA. The site is nestled between an elementary school, a fire station, and two churches. A walking path alongside a main road accessing the site encourages pedestrian and vehicular engagement. The proposed community center – Replacement – will do just that by superimposing a new structure of CMU while maintaining the existing concrete structure. The main concrete columns will be inverted to create void where there was once a solid. The exterior faces of the new structure take shape from the radii of the trees defining the current landscape.

The building’s approach to water was integral to the form of the roof and interior courtyard. The two form a connected system of water collection through phytoremediation, water retention, and overflow channels that are capable of managing storm water and flooding. Replacement aims to become a shelter and everyday hub for the Wilmington Island community.

Water Wise Wrapper by Debdeep Dam, M.Arch ’23
University of Southern California | Advisor: Lisa Little

California and the world at large have been facing tumultuous weather patterns. Respite from long-term drought comes in the form of devastating floods.

Throughout history, humans have had a symbiotic relationship with natural sources of water; often carrying both cultural and spiritual significance. Unfortunately, modern city-making has been oriented toward over-engineered city planning because modern cities have had access to uncontested water resources without regard to ecosystems or context. The modern city treats stormwater as a nuisance; something to be drained away out of sight even though water scarcity has become so real an issue that architectural systems that try to mitigate this by having systems in place for water conservation, collection, cleaning, and reuse should be adopted by all buildings.

With the increasing commodification of clean potable water and gross exploitation of this natural resource, it has become imperative to explore options for democratically using, storing, and distributing this natural resource.

“Water-Wise Wrapper attempts to bring this crucial subject to the forefront of urban living while advocating for a system that can leverage the vast vertical landscapes of the modern city and act like a sponge: absorbing or releasing water when needed and releasing it when required. This thesis proposes a system that physically stores and releases water while also acting as a visual representation of the scarcity of this vital resource.

This project won the USC Master of Architecture Innovation in Directed Design Research Award. In recognition of the most outstanding graduate final degree project illustrating technological innovation and advancement.

Instagram: @debdeepdam, @lisa_k_little

Hydro-Urbanism: A Walkable, Coastal Neighborhood Designed to Withstand Flooding and Use Water as A Design Asset by Zachary Faza, M.Arch ’23
Florida Agricultural And Mechancial University | Advisor: Kyle Spence

Located on the low-lying, sandy peninsula of Pinellas County, St. Petersburg, Florida, is a coastal city that has much at risk from hurricanes and heavy rainfall events. No Florida county has more buildings and more value at risk in Category 1 storms.

When a severe storm impacts a coastal city, high winds build up and push the water from the sea over the land. This is called storm surge, and it can cause devastating damage like that seen during 2022 Category 4 Hurricane Ian impacting this region of the State.

Zachary’s design-research investigative thesis presents research on existing case studies of aesthetically pleasing, multi-beneficial flood infrastructure that benefits society beyond flood control. This project applied intuitive thought to produce a design proposal for a walkable, 40-acre master-planned development that integrates flood-adaption infrastructure as aesthetic and recreational features.

The proposed master planned development orients around a central pond serving as a water retention feature and encloses two public park islands. This pond connects to a site-wide network of waterways and bioswales (naturally filtering landscape features) designed to absorb, filter, and store stormwater runoff from neighborhood roads.

Around the pond are several distinct built areas, each with latent design exploration. The primary regions built around the pond include a Canal-Front residential area that has elevated structures that looks inwards onto tree-lined canal parks, the Waterside Shops mixed-use shopping center with a grocery store, waterfront commercial spaces, and apartments, and the public Forest Park that spans two islands within the central pond and forms the spine of the development’s pedestrian and bicycle circulation network.

Zack’s project is a design exercise demonstrating that flood adaptation measures can be an aesthetically pleasing part of a holistic urban design solution that mitigates damage from floods and storms and creates vibrant, profitable commercial, public, and residential areas.

This project won the FAMU Three-Minute Thesis First-Place Award

Come back next week for Part II!

2022 Study Architecture Student Showcase - Part I

Welcome to the first installment of the 2022 Study Architecture Fall Student Showcase series! To give you an insight into what it is like to study architecture, we are taking a closer look at student thesis and capstone work from 2022. Throughout this series, we will feature work from recent graduates of ACSA member schools across the globe, highlighting a wide array of unique architectural explorations. For the next couple of months we will feature weekly installments of design student’s final projects covering a range of topics. This week we take a look at the intersection of architecture and climate change, specifically as it relates to sea level rise.

We will be sharing these projects on Instagram at @studyarchitecture and @imadethat_ so let us know your favorite there.

Floating Omnitopia by Jessica Smith, M.Arch ’22
University of Virginia | Advisor: Mona El Khafif 

Norfolk, Virginia, is staring climate change in its full force as many residential areas are experiencing flooding throughout the year. These residential areas range in value of social vulnerability. The risk of flooding is not considered when determining “vulnerability.” It is observed that many areas of high vulnerability are also areas prone to flooding and are not protected by flood resilience projects. Other areas of low vulnerability are also affected by the flooding, but these residents have the resources to relocate out of Norfolk if needed. If they move, this will have a negative effect on the local economy. As more of Norfolk is taken by rising sea levels, where will these residents go?

FEMA has identified areas of recurring flooding, which will be called blue-fields. The homes within these blue fields are eligible for the FEMA Home Buyout program where a home-owner may sell their home to FEMA for that lot to be cleared. This project proposes another relief effort beyond this, in which this buyout funding from FEMA is used within a partnership to form a common.

This is the current prompt, and the urgent response should be an alternative to retreating, reject-ing both the utopian and dystopian models commonly associated with efforts to combat climate change. All the people in this area have a shared goal of protecting their homes, which creates a common ground. This is the basis needed for a new common of Norfolk of both shared assets and stewardship, existing on the water. It is a place for all, or the omnitopian common.

Inspired by projects carried out in the Netherlands, the omnitopia typology of housing is being implemented in Norfolk to create a collective partnership between residents and rising water conditions. It comes in the form of a common, a water-based community within which land(/water) and certain assets ownership is redefined as shared at the block-scale. Shared stewardship allows for growth / development / maintenance at a more concentrated (therefore, more effective) scale.

Forming the common of their choosing, the residents and various professionals are presented with a card game. The game is used to sculpt the form, congregate the residents, metabolize the system, compensate those involved, and restore ecological relationships. The players of the game hold various roles, from FEMA funding to the architect and residents. Select cards of the system are chosen to piece together the policies and creation of the common, making it adaptable to various people groups and sites. A sample common is formed to present an example of the omnitopia, using cards such as the medium density option in a cluster typology.

Instagram: @jessc.smith

Beyond the Barrier: The Resilience of Connecting People to Place by Eric Resnick, M.Arch ’22
University of Maryland | Advisor: Michael Ezban

Atlantic City, New Jersey is globally cited as one of the most vulnerable cities to the effects of climate change and sea level rise, representing the socioeconomic, cultural, and ecological threats that all coastal communities will face within the next half-century. 2060 projections indicate that Atlantic City will experience up to 155+ flood events per year and 50% of the city could be uninhabitable.

In leveraging the city’s coastal location, current institutions, and historic tourism-based infrastructure, the Resilient Transect becomes a framework for adaptation and growth, engaging the public and attracting an international cohort of researchers, designers, and policymakers to test and implement globally applicable and revolutionary strategies for coastal resilience. The iconic Atlantic City Boardwalk is abstracted as a beach-to-bay datum to catalyze adaptation, support, research, and participation along the transect, adaptable to environmental change and socioeconomic needs within and beyond Atlantic City.

Rising Seas: Cataloging Architectural Response in the Conch Republic by Christine Sima, M.Arch ’22
University of Cincinnati | Advisor: Edward Mitchell

Thesis research focused on architectural and environmental responses to sea level rise. Following this research, a catalog of architectural responses was created as a design framework for future architects.

The selected site of Key West Florida helps show the utilization of the four major response categories from the catalog; Evacuation, Protection, Adaptation, and Adoption. All included images show theoretical implementation of the catalog across different zones of the island.

Instagram @christinesima.arch

Demo-Polis for Athens, Greece by Maria Lazaridis, B.Arch ’22
NY Institute of Technology | Advisor: Jonathan Friedman

Athens, Greece occupies a significant role in the history of architecture as the birthplace of classical order. Its associated role in history however, developed a sprawling city ignorant of its ancient architecture and organizational urban plan order . This congested metropolis is filled with brutal concrete apartment blocks and lack of green space, overall contributing to larger issues of congestion and heat island effect due to climate change.

This thesis explores a development of a resilient Athens, equipped for its density whilst promoting sustainability. This thesis explores the design of an efficient city plan that no longer ignores un-excavated archaeological sites to create a poetic relationship of old city to new city, while overall improving quality of life.

Pale Blue Dot: Adaptation in the Flux of Chaos by Jasmin (Minji) Kim, Taylor Marshall, Jeannette Wehbeh, M.Arch ’22
Toronto Metropolitan University | Advisor: Marco Polo

The impact of climate change will not spare a single aspect of life as we know it and adaptation is our only option at this point in the trajectory of the world’s demise. Although we will be experiencing similar climate catastrophes around the globe, each region will have its own adaptation method dependent on location and culture. Synthesizing our research resulted in a new map of adaptability conceived of Goldilocks Zones deemed habitable lands. These Goldilocks Zones will be the most vulnerable to the elements of chaos and the most significant regions affected by the year 2100. Fez, Morocco was selected as the geographical area of study due to its numerous elements of chaos, including natural disasters, high land surface temperatures, wildfires, air pollution, rising air temperatures, and an influx of migrants.

Flux is chaos-seeking balance through adaptive processes. Our research towards the year 2100 and the layers of the climate chaos we will face, combined with conceptual theories on adaptation, shows no ‘single’ solution for adaptability. To adapt to our current and future evolving environment, a series of fluctuating initiatives that tackle issues at various scales is instrumental for present and future change. Nine strategies, applied to Fez, Morocco, can be applied to any other city within the Goldilocks Zone. It is a framework to guide the evolution of architecture through climate change while maintaining tradition, meaning, and comfort.

Instagram: @jasminkimm, @taylormade.arch

LIVE CORAL: Science & Living District by Wilmaliz Santiago, B.Arch ’22
Pontifical Catholic University of Puerto Rico | Advisor: Pedro A. Rosario

At the global level, climate change has brought with it several transformations, among them the rise in sea level. There are two main reasons why this happens, thermal expansion and glacial melting, both caused by global warming. Scientific research points out two important dates for this situation, in 2030 changes in sea level will begin to be felt and/or noticed significantly in all parts of the world, leaving a few years on the way to 2100 where we will have sea level at its peak. For that year it is estimated that hundreds of cities will be under flooded areas and many of them will disappear. All this has great consequences for all forms of life on the planet. And it is that not only humanity would be suffering the ravages, but also the flora and fauna, especially marine life. Sedimentation, the offset of nesting waves, high temperatures, the bleaching of coral reefs and endless situations that leave us with great consequences.

The project located in Rincón, Puerto Rico, is one based on scientific theories and predictions. The LIVE CORAL proposal seeks to provide a safe place for both humanity and marine life. A building is created where marine life can be researched and protected through this process of adaptation to sea level rise. In the same way, human life will have a safe place to live without limiting its quality of life, in addition to creating awareness and educating humanity about these changes and the effects it will have on other species and how this ends up affecting us.

The future in some way will always be uncertain and difficult to predict. However, thanks to the technological advances of our time there are many things that can help us foresee it. For this reason, this proposal seeks a complete adaptation over the years from the present to the imaginable 2100. Maintaining its efficiency, quality and use in its best state.

Instagram: @wilmaliz_santiago

A Residential Guide for Redesigning Coastal Homes in Hawai’i for Future Sea Level Rise: Punalu’u, O’ahu by Josephine Briones, D.Arch ’22
University of of Hawaii at Manoa | Advisor: Wendy Meguro

The ongoing consequences of climate change, due to human activity, have created a need for a shift in the ways we live, think, and build (Oppenheimer, 2019). For sea level rise, its effects like beach erosion, flooding, and inundation continue to persist; impacting coastal communities, especially those that lie on the shorelines, that will remain at risk if adaptive measures are not used (Oppenheimer, 2019).

On Oahu, Hawai’i, there has been a shift to increase resilient communities, however, small-private landowners, such as single-family homes along the shorelines have been left with limited guidance, education, and resources compared to large public/private landowners (City and County of Honolulu, 2020). As O’ahu’s efforts cater to large-scale development, like high-rises and/or mixed-use commercial structures for sea level rise adaptations, there is a demand for localized adaptation for communities not described by current guidelines and local land use ordinances. 72% of potential economic loss with 3.2 feet of sea level rise will be residential structures and land (Hawaiʻi Climate Change Mitigation and Adaptation Commission, 2021). As coastal communities prepare to adapt for sea level rise, new design thinking is necessary to exceed the requirements and recommendations that are currently practiced.

In alignment with the 2017 Hawai’i Sea Level Rise Vulnerability and Adaptation Report that states, “More research is needed to improve understanding and projections of localized vulnerability of beach and coastal environments to combined impacts of poorly sited beachfront development and erosion and flooding with sea level rise” (PacIOOS, 2021). This research uses a case study home along the shoreline of Punalu’u/Hau’ula to envision a new coastal typology in Hawai’i with adaptation solutions that are phase-able for living with increased sea levels. By providing shoreline homeowners of Hawai’i, especially those who own detached single-family homes that are at risk to the effects of sea level rise, with building adaptation guidance, practical design solutions, and accessible knowledge gives individuals the insights needed to protect their property, increase communities’ resilience to sea level rise impacts and, globally, provide solutions as incremental change that can be used to inform future shoreline homes on a large-scale.

Instagram: @jojo_briones

Shifting Sediments: Inhabiting the Land, the Sea, and the Space In-Between by Natasha Zubricki, M.Arch ’22
Dalhousie University | Advisor: Catherine Venart

The coastline is a dynamic edge between land and sea ruled by natural forces and illustrated through material processes of erosion, accretion, and deposition. As our climate warms with an increase in storm conditions and sea levels, the natural forces at work accelerate. Cycles of growth and destruction are an inevitable aspect of our environment that can be analyzed through hydrological impact, geological structures, and ecological networks, all forming ruins off fragments of the earth.

This thesis examines Prince Edward Island as a case study of how to shift our perspective and embrace the ocean as an instigator of opportunity. Three locations along an edge are investigated exploring various material and programmatic relationships that can be utilized as a layered strategy to become a catalyst for new life. A temporal architecture that works as both measure and armature is implemented as an infrastructural approach aimed to adapt to inevitable uncertainty.

The thesis focuses on the relationships between humans and oysters as main actors for adaptation while engaging with the natural forces at play. The project moves through time adapting to rising seas and the changing environment, allowing new possibilities to be formed off a ruin of the past. Through engaging with natural forces instead of fighting against, we can create new edges, establish home for both humans and oysters, as well as use inevitable decay to provoke new life.

Instagram: @tash_zubri

Check back next week for Part II of the 2022 Study Architecture Student Showcase.

 

Harvard U. Grad Student Project Feature - Shifting the 'Horizon'

(via News.Harvard)

Ask Joanne Cheung why she studies the way people conceptualize climate change and she’ll tell you, “I’m a designer. It’s part of the job to think about the future.”

Cheung, a master’s of architecture student at Harvard’s Graduate School of Design and a fellow at the Berkman Klein Center for Internet & Society, makes a passionate case for integrating climate change into art and design. She believes they have a special capacity to shape how people see, which can in turn effect how they act on climate.

“This is a hard truth. Why aren’t we factoring climate change into every part of the design process?” she asked.

Cheung’s most recent work builds on a trip she took to Iceland last summer. There, she worked with researchers at the Iceland Glaciological Society and Icelandic Mountain Guides to capture video and digital imagery of the changing landscape. The result is an interactive art exhibition called “Horizon” that will run through Feb. 3 at Industry Lab on Norfolk Street in Cambridge.

“I’ve always been fascinated by the fact that the horizon is an imagined separation and is highly subjective, depending on where you look from,” Cheung said. “Climate change directly shapes our perception of the horizon as the sea level changes the very contour of the island.

“For me, the horizon is also a metaphor for the limits of human perception. What we take to be the vanishing point is but the farthest point we can see.”

“Horizon” uses photographs and 360-degree video to show melting glaciers in stark relief and explore how the coastline will recede as sea levels rise. A unique partnership with Harvard’s Department of Earth and Planetary Sciences visualization lab let Cheung produce the images with state-of-the-art equipment.

Cheung plans to use the photographs in conjunction with a book by the Icelandic poet Stefán Hördur Grimsson in order to stage an imaginary dialogue between text and image.

Another project, developed with Harvard’s metaLAB, shows two ways to look at the landscape — as an artist and as a computer — forcing viewers to confront the limitations of the tools we use to understand issues such as climate change.

poetry

Icelandic poet Stefán Hördur Grimsson Prints

Read more

NYIT Grad, Daniel Horn, The Extreme-Weather Architect

(via QZ)

Daniel Horn, a fresh New York architecture graduate, has launched a global competition around a tricky design question—what is the most aesthetic way to raise the elevation of an entire neighborhood block by eight to 10 feet?

Call it extreme weather architecture. Horn, a 23-year-old graduate of the New York Institute of Technology (more on him below), is part of a boom in design competitions and urban reconstruction initiatives built around climate change. A rash of storms, drought and fires in recent years has ignited this contemplation of a new school of design cutting across cities and shorelines, homes and commercial buildings.

The emerging class of architecture suggests the onset of a global design-and-construction industry worth tens of billions of dollars in the coming years. Places such as the Netherlands have had to build around environmental- and weather-related challenges for years. But to the degree that extreme-weather architecture and construction moves to the mainstream, it would become one of the biggest infrastructure businesses on the planet, straddling US, Europe, Asia and Latin America. The cost of one recent set of recommendations alone, by New York Mayor Michael Bloomberg, responding to the ravages of Hurricane Sandy in October 2012, is estimated at $20 billion. Studies of the spending to come around the world range well into the hundreds of billions of dollars.

Already, there are signs of a big trend. In addition to Bloomberg’s initiative, Shaun Donovan, the US secretary of housing and urban development, on June 20 unveiled a competition called Rebuild By Design, whose winning concept will be built using public and private funds. On June 13, the American Institute of Architects and three other groups announced the Designing Recovery competition, which seeks new housing designs for storm-prone areas.

Horn’s contest is called the 3C Competition (for Comprehensive Coastal Communities). At college, Horn had a mind to carve out a career in environmentally minded architecture—as his undergraduate thesis, Horn did a redesign of Newtown Creek, an industrial hub between Brooklyn and Queens near the East River.

But when Hurricane Sandy struck, the industrial businesses lining the creek were hit hard by flooding, and Horn re-conceived his thesis. Now he incorporated the risk of massive flooding. In order to absorb a Category 3 storm surge (the level that Sandy reached at its peak), Horn equipped the building around which his thesis centered with walls resembling a canal lock. Floodwaters entering the lock would be channeled into adjacent wetlands.

Horn thinks that the idea would scale up. There could be “an entire connected system of these ‘bulkhead buildings,’ as I call them, working together as a public space system and a storm water filter system which would also alleviate the area in a strong storm surge,” Horn told Quartz.

As it happened, Mayor Bloomberg’s group looked at Newtown as well in his $20 billion plan for redesigning the city.

Bloomberg’s idea (Office of the New York Mayor)

Horn’s Newtown model (Courtesy of Daniel M. Horn)

Horn and a few college classmates also wondered why the New York area was generally unprepared for such weather. Extreme architecture clearly needed to move beyond conceptualized theses to a fundamental reshaping of the construction along the region’s shorelines.

But how? A single homeowner could elevate his own house on a high foundation, but that would do nothing to save the neighborhood, not to mention that it would look strange next to everything else around it. Horn’s group decided that a holistic approach was needed. That led to the competition.

The 3C Competition invites architects to select any community along the US northeast coast, and suggest a design for elevated homes in the context of the surrounding landscape and topography. The top three winners are to be announced in New York in October.

More than 210 teams from about 30 countries have entered so far, says Horn.

The field is young—Horn as yet has not found registered architects specializing in extreme weather work, but it is the talk of fresh graduates and architecture students. And it is they who will lead the way.


Follow Daniel Horn on Twitter and visit the NYIT profile page for more info on their programs.